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Summary Humans have relatively low plasma ascorbate levels and high serum uric acid levels compared to most
mammals due to the presence of genetic mutations in L-gulonolactone oxidase and uricase, respectively. We review
the major hypotheses for why these mutations may have occurred. In particular, we suggest that both mutations may
have provided a survival advantage to early primates by helping maintain blood pressure during periods of dietary
change and environmental stress. We further propose that these mutations have the inadvertent disadvantage of
increasing our risk for hypertension and cardiovascular disease in today’s society characterized by Western diet and
increasing physical inactivity. Finally, we suggest that a ‘‘planetary biology’’ approach in which genetic changes are
analyzed in relation to their biological action and historical context may provide the ideal approach towards
understanding the biology of the past, present and future.

�c 2008 Elsevier Ltd. All rights reserved.
The reductionist paradigm for human biology has,
over the past century, been remarkably success-
ful. It has, in one sense, reached its apotheosis
through the complete sequencing of the human
genome [1]. This, together with analyses of the
transcriptome, the metabolome, and their higher
organization has provided a ‘‘parts list’’ for a
living organism.
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As these parts lists have become more com-
plete, it has become increasingly clear that they
do not provide anything approaching an under-
standing of human biology [2]. Additional ap-
proaches are needed if that understanding is to
emerge and, with it, the opportunity to manipu-
late the biological parts to manage, treat, and
cure human disease.

One approach is to exploit the axiom that a sys-
tem can be fully understood only if we understand
both its structure and its history. This is certainly
true for the terrestrial living systems, which
are the products of four billion years of random
ved.
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variation and natural selection, all constrained by
physical and chemical law. Without understanding
this history, we are no more likely to understand
biology than we are to understand the QWERTY
computer keyboard without knowing of the type-
writer or the Federal Reserve banking system with-
out knowledge of the Panic of 1896.

This has led us and others to suggest that sys-
tems analyses involving a wide field disciplines
(including paleontology, paleoecology, evolution-
ary molecular biology), a process that has been
termed planetary biology [3], may provide a bet-
ter approach to understand how we evolved to
our current state. This approach may also provide
hypotheses into why humans have certain diseases
that appear rare among other species, including
obesity, essential hypertension, preeclampsia,
cardiovascular disease, alcoholism, and other con-
ditions. Perhaps most importantly, a planetary
analysis may provide means for testing evolution-
ary hypotheses, by reconstructing the ancestral
genes and testing how the various mutations
may have affected survival given the ecological
conditions at that time [4,5]. This approach may
also be useful in understanding current genetic
polymorphism in human populations that gener-
ates differential disease incidence and differential
responses to therapies. Furthermore, by providing
insight into active evolutionary processes, these
analyses may also help predict the needs of our
species in response to future changes in climate
and ecology.

This paper concerns the differences between hu-
mans and other mammal species, with a focus on
two key genetic differences. The first is the ab-
sence of the final enzyme (L-gulonolactone oxi-
dase) in the pathway of vitamin C (ascorbate)
biosynthesis. This enzyme was present in primitive
primates, but was lost in the primate lineage lead-
ing to monkeys and apes in the Eocene (55-35
MYA). This generated a need for humans, monkeys,
and other ‘‘higher’’ primates to obtain ascorbate
from the diet.

The second is the absence of an active enzyme
(urate oxidase, or uricase) involved in the degrada-
tion of purines. This arose through mutation of the
gene encoding uricase in lineages leading to higher
primates in the Miocene (5-23 MYA). This caused
urate to be the final enzymatic endproduct in pur-
ine metabolism.

As a consequence of these mutations, the plas-
ma concentrations of ascorbate and urate are quite
different in humans and most other mammals.
Interestingly, this means that two of the three
most important water-soluble antioxidants in
mammals (the other being glutathione) are differ-
ent in humans and (for example), rats, an organism
widely used in biomedical research to model hu-
man biology. We will discuss current hypotheses
for why these mutations occurred, and how plane-
tary biological studies might be able to provide a
better understanding for the mechanisms leading
to these evolutionary changes.
Ascorbate synthesis and its role as an
antioxidant

Ascorbate (vitamin C) is synthesized in most
mammals by an active five-enzyme process that
begins with an activated form of glucose, UDP-
glucose. UDP-glucose is present primarily in the li-
ver or kidney, depending on species (Fig. 1). As
such, its concentration is highly dependent on
intracellular glucose reserves and glycogenolysis.
Further, factors that reduce glucose reserves
(starvation, low carbohydrate diets) or inhibit gly-
cogenolysis (such as fructose) inhibit ascorbate
synthesis [6].

Ascorbate has numerous biological functions,
including important roles in the synthesis of colla-
gen, creatine and catecholamine. However, one
of its most important roles is to function as an elec-
tron donor, or antioxidant. Antioxidants are
thought to play a key role in the protection of spe-
cies by blocking lipid peroxidation, DNA damage
and alkylation, and cell membrane injury [7,8].

An interesting feature of ascorbate is that it is
recyclable [9]. Specifically, when ascorbate reacts
with an oxidant, it is oxidized to the semidehydro-
ascorbate radical and then dehydroascorbate.
While some dehydroascorbate may be catabolized
to various end products, dehydroascorbate can
also be reduced back to ascorbate by reaction
with glutathione or via an enzymatic pathway [6].

Ascorbate and dehydroascorbate enter cells via
different transporters, with the ascorbate
transporter being specific Na+ dependent co-trans-
porters (SVCT1 and SCVT2) [10] and the dehydro-
ascorbate transporter using members of the Glut
family. Once transported, dehydroascorbate is
reduced immediately into ascorbate [11]. The
ascorbate transport system allows intracellular
ascorbate levels to be in the range of 2–4 mM
despite plasma levels that are significantly lower
(40–120 lM) [10]. Interestingly, when some cells,
such as human neutrophils are activated by a vari-
ety of stimuli, intracellular concentration of
ascorbate increases even more and can reach
14 mM, while its extracellular level remains un-
changed [12].



Figure 1 Ascorbate metabolism.
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Ascorbate is produced by many fish species,
lobe-finned fish (lungfish and the coelacanth),
amphibians, and other terrestrial vertebrates. Bio-
synthesis of ascorbate occurs primarily in the liver
(most mammals and some birds) or kidney (amphib-
ians and reptiles, some fish, and some birds) [13].
However, most primates lack the ability to make
ascorbate due to a mutation in L-gulonolactone oxi-
dase, which is the final enzyme involved in ascor-
bate synthesis [14]. The inability to synthesize
ascorbate is observed among all primates except
the prosimians (with the possible exception of Tar-
sius [15]) suggesting that the mutation occurred
during the Eocene between 55 and 35 million years
ago [14,16]. A variety of other species also lack the
ability to make ascorbate; these include the Indian
fruit-eating bat, the guinea pig, the Indian red
vented bul–bul bird, and some species of fish
[17,18].

One of the consequences of the loss of ascorbate
synthesis is the disease scurvy, which was first rec-
ognized to be due to a dietary deficiency of fruits
by James Lind [19]. It was nearly two centuries la-
ter when vitamin C (ascorbate) was identified as
the critical nutrient for which a deficiency was
responsible for the disease [20]. Today, scurvy is
rare, and plasma ascorbate levels are generally in
the range of 40–120 lM, which are well above lev-
els associated with this disease (typically <10 lM).
These blood levels are two to four times lower than
that observed in mammals that synthesize ascor-
bate [21]. Although the missing L-gulonolactone
oxidase in humans might be a reason for somewhat
lower concentration of ascorbate in the blood, its
concentration in other biological fluids [22] and
especially intracellular levels are much higher and
in most cases comparable with the mammals that
synthesize ascorbic acid [12,13,23,24].
Uric acid and the mutation of uricase

Uric acid is a metabolic product of purine metabo-
lism generated from the breakdown of DNA, RNA
and ATP (Fig. 2). The immediate precursor enzyme
is xanthine oxidoreductase which converts xan-
thine to uric acid with the generation of oxidants
(superoxide anion or hydrogen peroxide) or NADH.
In some species uric acid is then metabolized to
allantoin by the enzyme uricase (urate oxidase).
Depending on the species, allantoin may be further
degraded by allantoinase and allantoincase to gen-
erate ammonia.

Uric acid is also recognized as a water-soluble
antioxidant and is considered to be one of the most
important antioxidants in the plasma [25]. Uric
acid can donate an electron to form the urate rad-
ical; but unlike ascorbate this radical is not recy-
cled but rather is degraded via several different
pathways. Uric acid can react with a variety of sub-
stances including hydrogen peroxide, hydroxyl rad-
ical, peroxynitrite, and nitric oxide [26–28]. For
example, uric acid reacts with hydroxyl radical to
form allantoin, with peroxynitrite to form triuret,
and with nitric oxide to form 6-aminouracil
(Fig. 3). While these reactions might be beneficial
under certain conditions as a means for reducing
oxidative stress, some of these reactions, such as
the uric acid reaction with peroxynitrite, also pro-
duces radicals and alkylating species that may be
damaging [27,29].

Uric acid has also been proposed to have
neurostimulant properties based on its similarity in
chemical structure with caffeine [30] and due to
epidemiological and experimental studies suggesting
it may have a role in increasing reaction time, loco-
motor activity, and mental performance [31–35].

Uric acid is also important in innate immune
function. Specifically, uric acid may aid in the im-
mune recognition of dying cells [36], help activate
the inflammasome critical for interleukin-1 beta
release [37], and in the immune rejection of tumor
cells [38].

Most mammals have functional uricase, and
have uric acid levels in the 1–2 mg/dl range
(0.06–0.12 mM). In contrast, serum uric acid levels
are higher in man and the Great and Lesser Apes
due to parallel mutations of the uricase gene that



Figure 2 Uric acid metabolism.
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Figure 3 Non enzymatic pathways of urate degradation.
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occurred during the mid Miocene [39] (Fig. 4). Uri-
case activity is also functionally absent or immuno-
logically undetectable in certain New World
monkeys (such as the woolly monkey (Lagothrix)
and the macaque (Cynomolgus), consistent with a
mutation of the uricase gene [40,41]. Uricase activ-
ity is also lower in both Old World and New World
monkeys compared to other mammals [42,43].
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Recent studies suggest that this may be due to
mutations in the promoter regions [44]. Indeed,
evidence now suggests that the loss of uricase in
humans may have been stepwise, with a progres-
sive loss in activity (due to mutations in the pro-
moter region) followed by complete silencing of
the gene [44].
Why did early primates lose their ability
to synthesize ascorbate?

Several hypotheses have been proposed to account
for the loss of ascorbate synthesis by early prima-
tes. Pauling suggested that the loss of ascorbate
synthesis resulted as a consequence of the lack of
need, as early primates may have had ample access
to dietary ascorbate from root tips, seed sprouts,
fruits and green leaves [45]. However, Darwinian
theory suggests that there was likely a positive
selection mechanism that made it advantageous
to lack ascorbate synthesis; otherwise, both poly-
morphisms would have been predicted to survive.
In this regard, the enzyme L-gulonolactone oxidase
generates not only ascorbate but also hydrogen
peroxide (Fig. 1), and therefore is redox neutral,
whereas the dietary intake of ascorbate would in-
crease antioxidant activity. Thus, Banhegyi et al
have proposed there was a selection advantage to
supplying ascorbate stores primarily by diet [6].

An alternative hypothesis has been proposed by
Challem [46] and Challem and Taylor [47]. These
Figure 4 Uricase mutation in
authors have reviewed evidence that a primate ret-
rovirus may have inserted Alu elements in the gene
for L-gulonolactone oxidase that silenced the gene.
While the loss of ascorbate may have been benefi-
cial for the survival of the retrovirus, it may have
also led to increased levels of free radicals that
could increase the frequency of free radical-in-
duced mutations that could help accelerate the
evolution of these early primates [46–48].
What was the advantage to having uri-
case mutated?

The observation that parallel mutations involving
uricase occurred in early hominoid evolution
strongly suggests that there must have also been
a selection advantage during the Miocene to having
higher serum uric acid levels.

The most quoted hypothesis is that originally
proposed by Proctor [49] and later Ames [25] who
suggested that the uricase mutation may have oc-
curred as a means to replace serum antioxidant
activity after the loss of ascorbate synthesis. In-
deed, uric acid can help maintain ascorbate levels
[50]. Furthermore, the activity of other antioxidant
systems, such as superoxide dismutase, are also
higher in species lacking ascorbate [51]. Ames has
suggested that the reason humans have longer lon-
gevity compared to other mammals may relate to
the antioxidant benefits provided by the higher uric
acid levels [25]. Challenging this hypothesis,
early hominoid evolution.
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however, is the observation that neither ascorbate
or urate levels correlate with maximum life span in
vertebrates [52].

Another hypothesis is that the increase in uric
acid resulted in better reaction time and higher
mental performance that helped accelerate the
evolution of man [30]. While some epidemiological
studies have supported this, the evidence has been
weak at best. Alternative hypotheses could include
the possibility that an increase in uric acid might
improve innate immune function and the ability
to ward off infections or tumors [36–38].
An alternative hypothesis: the loss of
ascorbate and rise in uric acid had a role
in maintaining blood pressure during
periods of environmental stress

Ascorbate and blood pressure

The inability to synthesize ascorbate would have
forced early primates to ingest a vitamin C-rich
diet to maintain their ascorbate stores. The gorilla,
who lacks the ability to synthesize Vitamin C, eats
about 4.5 g of ascorbate per day [53]. Pauling has
calculated, based on synthetic rates in other mam-
mals, that the average 70 kg human would have to
ingest 1.8–4.1 g/d ascorbate to achieve similar
blood levels [45].

What would happen if suddenly a change in cli-
mate occurred that resulted in less available die-
tary ascorbate? Serum ascorbate levels would fall,
resulting in less protection from oxidative stress.
Furthermore, low concentrations of ascorbate,
particularly in the presence of catalytic metals
such as copper or iron, can become pro-oxidative
[54], and examples have been found where ascor-
bate increases rather than decreases intracellular
oxidative stress [55].

In turn, oxidative stress has been shown to raise
blood pressure [56]. For example, the depletion of
glutathione in rats rapidly results in a rise in blood
pressure [57]. Numerous animal models have shown
a key role for oxidative stress (present in the circu-
lation, blood vessels, and kidney) in mediating
hypertension [56]. Ascorbate administration also
lowers blood pressure in many hypertensive animal
models [58–60].

Epidemiologic studies have confirmed a strong
inverse relationship between serum ascorbate lev-
els and blood pressure [61–63]. Plasma levels of
ascorbate are lower in hypertensive subjects (mean
40 lmol/L) compared to normotensive controls
(mean 57 lmol/L) [64]. Plasma ascorbate levels
are also lower in African–Americans who have
higher rates of hypertension compared to whites
[65] and in other hypertensive conditions, such as
preeclampsia [66].

Vitamin C supplementation in patients with
hypertension have also reported a reduction in
blood pressure in some studies [67–69] but was
either negative or less effective in other studies
[70,71]. One potential explanation is that the ef-
fect of vitamin C on blood pressure appears to be
more effective in the studies using younger sub-
jects as opposed to studies that enrolled elderly
subjects with longstanding hypertension, possibly
because in later stages of hypertension the kidney
is the primary driving force [72]. In one recent
study of young subjects (age 30–59), a strong ef-
fect was observed with ascorbate levels and blood
pressure after either taking a vitamin C deplete
diet or following supplementation [68].

Given these considerations, it is tempting to
speculate that the mutation in ascorbate synthesis
occurred during a time of high vitamin C intake and
was partially advantageous since dietary intake did
not require the generation of oxidants that occurs
with its synthesis. However, if a climatologic
change resulted in famine or starvation, those pri-
mates that could still make vitamin C would de-
crease their synthesis (see above) with potential
advantage of stimulating oxidative stress and rais-
ing blood pressure; but those who could not synthe-
size ascorbate at all might develop more severe
oxidative stress and higher blood pressures that
might have provided a superior survival advantage
for that time.
Uric acid and blood pressure

We have recently proposed a hypothesis for how a
mutation in uricase might provide a survival advan-
tage by raising blood pressure [73]. Specifically,
there is evidence that during the early Miocene
there was a marked increase in ape species [74].
However, by the mid Miocene there was global
cooling (‘the Miocene Disruption’) associated with
the extinction of numerous species, likely including
many species of apes. During this period large areas
of rain forests dried out, leaving savannahs and
grasslands, and forcing early hominoids to develop
knuckle walking and change their diet. The Paleo-
lithic diet was low in sodium [75], and hence sur-
vival would be optimized by those species that
could maintain blood pressure and salt sensitivity.

Interestingly, while uric acid can function as an
antioxidant, it can also function as a pro-oxidant
on a variety of cell types and in vivo [27,29]. Indeed,
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inhibiting uricase in rats results in a rise in blood
pressure associated with systemic reduction in
endothelial nitric oxide and a stimulation of the re-
nin angiotensin system [76,77]. Over time uric acid
causes microvascular disease in the kidneys due to
direct effects of uric acid on vascular smoothmuscle
cells and endothelial cells [78–81]. Once these
changes occur the kidney preferentially holds onto
salt (development of salt-sensitivity) [73].

Evidence that uric acid is involved in blood pres-
sure in humans is equally compelling. There are
now extensive studies showing that a high uric acid
independently predicts the development of hyper-
tension [82–84]; likewise, an elevated uric acid is
common in early hypertension and was present in
almost 90% of hypertensive adolescents in one
study [85]. Furthermore, recent clinical trials have
found that lowering uric acid lowers blood pressure
in both adolescents and adults with hypertension
(Feig and Johnson, unpublished) [86,87].

In addition to raising blood pressure, recent
studies support uric acid as having a role in insulin
resistance and obesity [88,89]. Indeed, fructose,
which rapidly raises uric acid, induces metabolic
syndrome in animals and this can be ameliorated
by lowering uric acid [88]. The mechanism by which
uric acid mediates features of the metabolic syn-
drome is likely due to the ability of uric acid to
block some of insulin’s actions by reducing endo-
thelial nitric oxide as well as due to direct effects
of uric acid on the adipocyte [76,90].

Thus, the uricase mutation may have conferred
a survival advantage by helping to raise blood pres-
sure, stimulate salt-sensitivity, and induce insulin
resistance and mild obesity, and thereby help pro-
mote survival during a period of famine or stress.

How could a mutation that was a survival advan-
tage in the Miocene now be playing a role in the car-
diovascular epidemic? The consequence of the
uricasemutation is that humans not only have higher
uric acid levels than most other mammals but they
also can not regulate levels as effectively [91,92].
Interestingly, because the current Western diet is
high inmeats and fructose, bothwhich generate uric
acid, humans today have higher uric acid levels
(range 4–10 mg/dl) compared to primates that lack
uricase (where uric acid levels are typically in the 3–
4 mg/dl range) [92]. Our preliminary studies in
Yanomamo Indians living in their original habitat
and with their primitive diet found serum uric acid
levels in the 2–4 mg/dl range, suggesting that prim-
itive humans had lower uric acid levels than today
(Oliver and Johnson, preliminary data). Thus, in to-
day’s society we are ingesting significantly more
sweeteners (containing fructose) and meats (con-
taining purines) such that those who obtain the high-
est uric acid levels develop high blood pressure
(hypertension), insulin resistance and obesity, and
possibly diabetes and cardiovascular disease.
Planetary biology and the approach to
the uricase/ascorbate hypotheses

How can planetary biology help determine which
hypothesis is correct? By pinpointing the date of
the mutations and cross checking with the paleo-
ecological and anthropological record, we can
evaluate the effects of environment with the ge-
netic changes.

Emerging tools in paleogenetics provide an
experimental tool to test hypotheses that emerge
from this correlative science [93]. In a paleoge-
netics experiment, the structures of ancestral
genes are inferred from the sequences of their
descendents; the ancestral genes from extinct
organisms are then resurrected in the laboratory,
where their behavior is studied. This allows us
to evaluate their function under cell culture and
in animal models using inferred ancestral environ-
mental conditions.

Finally, paleogenetic evaluation of changes in
up- and down-stream genes may allow additional
testing of the hypothesis. For example, mice in
which uricase has been knocked out do not survive
due to a rapid rise in uric acid that leads to massive
uricosuria, intrarenal crystal deposition, and acute
renal failure [94]. Thus, there were likely changes
in other genes that regulate uric acid production
or excretion to prevent this complication in the pri-
mates that lost uricase. One possible change could
have been a contemporaneous reduction in the
rate of synthesis of uric acid.

Consistent with this possibility, humans have a
100-fold lower activity of xanthine oxidase than ro-
dents [95]. This appears to be the result of a loss of
transcription and core promoter activity for the
gene encoding that enzyme [96]. In some New
World primates, the level of serum uric acid is also
not elevated due to enhanced mechanisms of uri-
nary excretion [40]. Thus, identifying the temporal
sequence for changes in xanthine oxidase and in re-
nal urate transport may provide clues to the se-
quence by which the changes in gene expression
occurred as it relates to the paleoecological and
paleontological record.

Likewise, the mutation of ascorbate synthesis
did not change dramatically the intracellular levels
of ascorbate, even as it evidently lowered the ser-
um levels of ascorbate. This suggests that changes
in the management of ascorbate also occurred in
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more ancient primate lineages contemporary with
the loss of ascorbate biosynthesis. An obvious sys-
tem where compensatory changes might have been
effective is in the ascorbate transporters.

These considerations suggest a historical para-
digm for future research that should complement
in this century the reductionist paradigm of the last.
It is partly correlative science; interconnecting the
evolutionary histories of related genes should pro-
vide hypotheses to interpret of the evolutionary
biology of the biomolecular system. Paleogenetic
resurrections will provide experimental tests of
those hypothese. Animal model studies will provide
orthogonal tests, completing the connection be-
tween the biomolecules, natural history, and
physiology.
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